Objective: Since December 2019, a new coronavirus viral was initially detected in Wuhan, China. Population migration increases the risk of epidemic transmission. Here, the objective of study is to estimate the output risk quantitatively and evaluate the effectiveness of travel restrictions of Wuhan city.
Methods: We proposed a modified susceptible-exposed-infectious-recovered (SEIR) dynamics model to predict the number of coronavirus disease 2019 (COVID-19) symptomatic and asymptomatic infections in Wuhan. And, subsequently, we estimated the export risk of COVID-19 epidemic from Wuhan to other provinces in China. Finally, we estimated the effectiveness of travel restrictions of Wuhan city quantitatively by the export risk on the assumption that the measure was postponed.
Results: The export risks of COVID-19 varied from Wuhan to other provinces of China. The peak of export risk was January 21-23, 2020. With the travel restrictions of Wuhan delayed by 3, 5, and 7 d, the export risk indexes will increase by 38.50%, 55.89%, and 65.63%, respectively.
Conclusions: The results indicate that the travel restrictions of Wuhan reduced the export risk and delayed the overall epidemic progression of the COVID-19 epidemic in China. The travel restrictions of Wuhan city may provide a reference for the control of the COVID-19 epidemic all over the world.
Keywords: COVID-19; SEIR model; export risk; migration indexes.