Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer's disease

Sci Adv. 2020 Dec 4;6(49):eabb8680. doi: 10.1126/sciadv.abb8680. Print 2020 Dec.

Abstract

Myelin degeneration and white matter loss resulting from oligodendrocyte (OL) death are early events in Alzheimer's disease (AD) that lead to cognitive deficits; however, the underlying mechanism remains unknown. Here, we find that mature OLs in both AD patients and an AD mouse model undergo NLR family pyrin domain containing 3 (NLRP3)-dependent Gasdermin D-associated inflammatory injury, concomitant with demyelination and axonal degeneration. The mature OL-specific knockdown of dynamin-related protein 1 (Drp1; a mitochondrial fission guanosine triphosphatase) abolishes NLRP3 inflammasome activation, corrects myelin loss, and improves cognitive ability in AD mice. Drp1 hyperactivation in mature OLs induces a glycolytic defect in AD models by inhibiting hexokinase 1 (HK1; a mitochondrial enzyme that initiates glycolysis), which triggers NLRP3-associated inflammation. These findings suggest that OL glycolytic deficiency plays a causal role in AD development. The Drp1-HK1-NLRP3 signaling axis may be a key mechanism and therapeutic target for white matter degeneration in AD.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease* / genetics
  • Alzheimer Disease* / metabolism
  • Animals
  • Glycolysis
  • Humans
  • Inflammasomes* / metabolism
  • Mice
  • NLR Family, Pyrin Domain-Containing 3 Protein / genetics
  • NLR Family, Pyrin Domain-Containing 3 Protein / metabolism
  • Oligodendroglia / metabolism

Substances

  • Inflammasomes
  • NLR Family, Pyrin Domain-Containing 3 Protein