The emergence of clustered regularly interspaced short palindromic repeat (CRISPR) nucleases has transformed biotechnology by providing an easy, efficient, and versatile platform for editing DNA. However, traditional CRISPR-based technologies initiate editing by activating DNA double-strand break (DSB) repair pathways, which can cause adverse effects in cells and restrict certain therapeutic applications of the technology. To this end, several new CRISPR-based modalities have been developed that are capable of catalyzing editing without the requirement for a DSB. Here, we review three of these technologies: base editors, prime editors, and RNA-targeting CRISPR-associated protein (Cas)13 effectors. We discuss their strengths compared to traditional gene-modifying systems, we highlight their emerging therapeutic applications, and we examine challenges facing their safe and effective clinical implementation.
Keywords: CRISPR; CRISPR-Cas13; base editing; gene therapy; prime editing.
Copyright © 2020 Elsevier Ltd. All rights reserved.