A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy

Commun Biol. 2020 Nov 27;3(1):697. doi: 10.1038/s42003-020-01420-3.

Abstract

Antimicrobial peptides (AMPs) are a potential alternative to classical antibiotics that are yet to achieve a therapeutic breakthrough for treatment of systemic infections. The antibacterial potency of pleurocidin, an AMP from Winter Flounder, is linked to its ability to cross bacterial plasma membranes and seek intracellular targets while also causing membrane damage. Here we describe modification strategies that generate pleurocidin analogues with substantially improved, broad spectrum, antibacterial properties, which are effective in murine models of bacterial lung infection. Increasing peptide-lipid intermolecular hydrogen bonding capabilities enhances conformational flexibility, associated with membrane translocation, but also membrane damage and potency, most notably against Gram-positive bacteria. This negates their ability to metabolically adapt to the AMP threat. An analogue comprising D-amino acids was well tolerated at an intravenous dose of 15 mg/kg and similarly effective as vancomycin in reducing EMRSA-15 lung CFU. This highlights the therapeutic potential of systemically delivered, bactericidal AMPs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Anti-Bacterial Agents / therapeutic use
  • Disease Models, Animal
  • Fish Proteins / chemistry
  • Fish Proteins / pharmacology*
  • Fish Proteins / therapeutic use
  • HEK293 Cells
  • HeLa Cells
  • Humans
  • Hydrogen Bonding
  • Lung Diseases / drug therapy*
  • Lung Diseases / microbiology
  • Male
  • Membranes, Artificial
  • Mice
  • Mice, Inbred C57BL
  • Microbial Sensitivity Tests
  • Pore Forming Cytotoxic Proteins / chemistry
  • Pore Forming Cytotoxic Proteins / pharmacology*
  • Pore Forming Cytotoxic Proteins / therapeutic use
  • Protein Conformation

Substances

  • Anti-Bacterial Agents
  • Fish Proteins
  • Membranes, Artificial
  • Pore Forming Cytotoxic Proteins
  • pleurocidin