Flow cytometry is a popular technique used for both clinical and research purposes. It involves laser-based technology to characterize cells based on size, shape, and complexity. Additionally, flow cytometers are equipped with the ability to take fluorescence measurements at multiple wavelengths. This capability makes the flow cytometer a practical resource in the utilization of fluorescently conjugated antibodies, fluorescent proteins, DNA binding dyes, viability dyes, and ion indicator dyes. As the technology advances, the number of parameters a flow cytometer can measure has increased tremendously, and now some has the capacity to analyze 30-50 or more parameters on a single cell. Here, we describe the basic principles involved in the mechanics and procedures of flow cytometry along with an insight into applications of flow cytometry techniques for biomedical and allergic disease research.
Keywords: Compensation; FACS; Fluorescence; Immunophenotyping; Light scatter.