Background: Use of electronic cigarettes (e-cigarettes) is prevalent among adolescents and young adults, but there has been limited knowledge about health consequences in human populations. We conduct a systematic review and meta-analysis of results on respiratory disorders from studies of general-population samples and consider the mapping of these results to findings about biological processes linked to e-cigarettes in controlled laboratory studies.
Method: We conducted a literature search and meta-analysis of epidemiological studies on the association of e-cigarette use with asthma and with COPD. We discuss findings from laboratory studies about effects of e-cigarettes on four biological processes: cytotoxicity, oxidative stress/inflammation, susceptibility to infection and genetic expression.
Results: Epidemiological studies, both cross-sectional and longitudinal, show a significant association of e-cigarette use with asthma and COPD, controlling for cigarette smoking and other covariates. For asthma (n=15 studies), the pooled adjusted odds ratio (aOR) was 1.39 (95% CI 1.28-1.51); for COPD (n=9 studies) the aOR was 1.49 (95% CI 1.36-1.65). Laboratory studies consistently show an effect of e-cigarettes on biological processes related to respiratory harm and susceptibility to illness, with e-cigarette conditions differing significantly from clean-air controls, although sometimes less than for cigarettes.
Conclusions: The evidence from epidemiological studies meets established criteria for consistency, strength of effect, temporality, and in some cases a dose-response gradient. Biological plausibility is indicated by evidence from multiple laboratory studies. We conclude that e-cigarette use has consequences for asthma and COPD, which is of concern for respirology and public health.
The content of this work is not subject to copyright. Design and branding are copyright ©ERS 2021.