Transforming growth factor-beta 1 (TGF-β1) is a cytokine with marked pro-fibrotic action on cardiac fibroblasts (CF). TGF-β1 induces CF-to-cardiac myofibroblast (CMF) differentiation, defined by an increase in α-smooth muscle cells (α-SMA), collagen secretion and it has a cytoprotective effect against stimuli that induce apoptosis. In the Endoplasmic Reticulum (ER) lumen, misfolded protein accumulation triggers ER stress and induces apoptosis, and this process plays a critical role in cell death mediated by Ischemia/Reperfusion (I/R) injury and by ER stress inducers, such as Tunicamycin (Tn). Here, we studied the regulation of CHOP, a proapoptotic ER-stress-related transcription factor in CF under simulated I/R (sI/R) or exposed to Tn. Even though TGF-β1 has been shown to participate in ER stress, its regulatory effect on CF apoptosis and ER stress-induced by sI/R or TN has not been evaluated yet. CF from neonatal rats were exposed to sI/R, and cell death was evaluated by cell count and apoptosis by flow cytometry. ER stress was assessed by western blot against CHOP. Our results evidenced that sI/R (8/24) h or Tn triggers CF apoptosis and an increase in CHOP protein levels. TGF-β1 pre-treatment partially prevented apoptosis induced by sI/R or Tn. Furthermore, TGF-β1 pre-treatment completely prevented CHOP increase by sI/R or Tn. Additionally, we found a decrease in α-SMA expression induced by sI/R and in collagen secretion induced by Tn, which were not prevented by TGF-β1 treatment. In conclusion, TGF-β1 partially protects CF apoptosis induced by sI/R or Tn, through a mechanism that would involve ER stress.
Keywords: Cardiac fibroblasts; ER stress; Ischemia/reperfusion; TGF-β1; Tunicamycin.
Copyright © 2020. Published by Elsevier Ltd.