Transcriptome and proteome mapping in the sheep atria reveal molecular featurets of atrial fibrillation progression

Cardiovasc Res. 2021 Jun 16;117(7):1760-1775. doi: 10.1093/cvr/cvaa307.

Abstract

Aims: Atrial fibrillation (AF) is a progressive cardiac arrhythmia that increases the risk of hospitalization and adverse cardiovascular events. There is a clear demand for more inclusive and large-scale approaches to understand the molecular drivers responsible for AF, as well as the fundamental mechanisms governing the transition from paroxysmal to persistent and permanent forms. In this study, we aimed to create a molecular map of AF and find the distinct molecular programmes underlying cell type-specific atrial remodelling and AF progression.

Methods and results: We used a sheep model of long-standing, tachypacing-induced AF, sampled right and left atrial tissue, and isolated cardiomyocytes (CMs) from control, intermediate (transition), and late time points during AF progression, and performed transcriptomic and proteome profiling. We have merged all these layers of information into a meaningful three-component space in which we explored the genes and proteins detected and their common patterns of expression. Our data-driven analysis points at extracellular matrix remodelling, inflammation, ion channel, myofibril structure, mitochondrial complexes, chromatin remodelling, and genes related to neural function, as well as critical regulators of cell proliferation as hallmarks of AF progression. Most important, we prove that these changes occur at early transitional stages of the disease, but not at later stages, and that the left atrium undergoes significantly more profound changes than the right atrium in its expression programme. The pattern of dynamic changes in gene and protein expression replicate the electrical and structural remodelling demonstrated previously in the sheep and in humans, and uncover novel mechanisms potentially relevant for disease treatment.

Conclusions: Transcriptomic and proteomic analysis of AF progression in a large animal model shows that significant changes occur at early stages, and that among others involve previously undescribed increase in mitochondria, changes to the chromatin of atrial CMs, and genes related to neural function and cell proliferation.

Keywords: Atrial fibrillation; Chromatin; Mitochondria; Proteomics; RNA-seq.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials
  • Animals
  • Atrial Fibrillation / genetics
  • Atrial Fibrillation / metabolism*
  • Atrial Fibrillation / physiopathology
  • Disease Models, Animal
  • Disease Progression
  • Gene Expression Profiling*
  • Heart Atria / metabolism*
  • Heart Atria / physiopathology
  • Heart Rate
  • Male
  • Proteome*
  • Proteomics
  • Sheep, Domestic
  • Time Factors
  • Transcriptome*

Substances

  • Proteome