Understanding of neonicotinoid insecticides toxicity on non-target organisms, such as bees, has indirectly promoted their soil treatment use. However, their effect on soil ecosystems haven't fully understood. Here, based on 16S rRNA high-throughput sequencing and metagenomics, the effects of neonicotinoid insecticide thiamethoxam on bacterial communities and metabolic functions in two types of soils were studied. Thiamethoxam treatment significantly affected soil bacterial abundance, reduced microbial diversity, and changed the bacterial community structure in the short term, and the structure soon returned to a stable state. Soil type and time were important factors affecting bacterial community structure. Some plant growth-promoting rhizosphere bacteria (PGPR) including Actinobacteria were found, and their populations were reduced, while pollutant-degrading bacteria including Firmicutes were also found, and their populations were increased. Based on metagenomics analysis, thiamethoxam treatment insignificantly promoted or inhibited multiple metabolic processes, but gene abundance of some key processes significantly changed. Subtypes of 18 biodegradation genes (BDGs) and 5 pesticide degradation genes (PDGs) were identified. Thiamethoxam treatment significantly increased the abundance of BDGs and PDGs, including cytochrome P450. Potential hosts of P450 degradation genes, including the genus Rhodococcus, were discovered. Conclusions of this study will promote safety evaluation and degradation-related research on neonicotinoid insecticides in soil.
Keywords: Bacteria; Degradation genes; Metagenomics; Neonicotinoid insecticides; Soil.
Copyright © 2020 Elsevier B.V. All rights reserved.