Environmental filtering and limiting similarity mechanisms can simultaneously structure community assemblages. However, how they shape the functional and phylogenetic structure of root neighborhoods remains unclear, hindering the understanding of belowground community assembly processes and diversity maintenance. In a 50-ha plot in a subtropical forest, China, we randomly sampled > 2700 root clusters from 625 soil samples. Focusing on 10 root functional traits measured on 76 woody species, we examined the functional and phylogenetic structure of root neighborhoods and linked their distributions with environmental cues. Functional overdispersion was pervasive among individual root traits (50% of the traits) and accentuated when different traits were combined. Functional clustering (20% of the traits) seemed to be associated with a soil nutrient gradient with thick roots dominating fertile areas whereas thin roots dominated infertile soils. Nevertheless, such traits also were sorted along other environmental cues, showing multidimensional adaptive trait syndromes. Species relatedness also was an important factor defining root neighborhoods, resulting in significant phylogenetic overdispersion. These results suggest that limiting similarity may drive niche differentiation of coexisting species to reduce competition, and that alternative root strategies could be crucial in promoting root neighborhood resource use and species coexistence.
Keywords: RLQ analysis; environmental filtering; limiting similarity; null model; root traits; species coexistence; subtropical forest.
© 2020 The Authors New Phytologist © 2020 New Phytologist Trust.