Loss of MTX2 causes mandibuloacral dysplasia and links mitochondrial dysfunction to altered nuclear morphology

Nat Commun. 2020 Sep 11;11(1):4589. doi: 10.1038/s41467-020-18146-9.

Abstract

Mandibuloacral dysplasia syndromes are mainly due to recessive LMNA or ZMPSTE24 mutations, with cardinal nuclear morphological abnormalities and dysfunction. We report five homozygous null mutations in MTX2, encoding Metaxin-2 (MTX2), an outer mitochondrial membrane protein, in patients presenting with a severe laminopathy-like mandibuloacral dysplasia characterized by growth retardation, bone resorption, arterial calcification, renal glomerulosclerosis and severe hypertension. Loss of MTX2 in patients' primary fibroblasts leads to loss of Metaxin-1 (MTX1) and mitochondrial dysfunction, including network fragmentation and oxidative phosphorylation impairment. Furthermore, patients' fibroblasts are resistant to induced apoptosis, leading to increased cell senescence and mitophagy and reduced proliferation. Interestingly, secondary nuclear morphological defects are observed in both MTX2-mutant fibroblasts and mtx-2-depleted C. elegans. We thus report the identification of a severe premature aging syndrome revealing an unsuspected link between mitochondrial composition and function and nuclear morphology, establishing a pathophysiological link with premature aging laminopathies and likely explaining common clinical features.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acro-Osteolysis / diagnostic imaging
  • Acro-Osteolysis / genetics
  • Acro-Osteolysis / metabolism*
  • Acro-Osteolysis / pathology
  • Aging, Premature / genetics
  • Aging, Premature / metabolism
  • Animals
  • Apoptosis
  • Caenorhabditis elegans
  • Cell Proliferation
  • Child
  • Down-Regulation
  • Female
  • Fibroblasts / metabolism
  • Fibroblasts / pathology
  • Gene Expression Regulation
  • Genetic Predisposition to Disease / genetics*
  • Genotype
  • Homozygote
  • Humans
  • Lipodystrophy / diagnostic imaging
  • Lipodystrophy / genetics
  • Lipodystrophy / metabolism*
  • Lipodystrophy / pathology
  • Male
  • Mandible / abnormalities*
  • Mandible / diagnostic imaging
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism*
  • Metalloendopeptidases
  • Mitochondria / metabolism*
  • Mitochondrial Membrane Transport Proteins / genetics
  • Mitochondrial Proteins / genetics
  • Mitochondrial Proteins / metabolism*
  • Mutation
  • Phenotype
  • Skin
  • Whole Genome Sequencing

Substances

  • MTX1 protein, human
  • MTX2 protein, human
  • Membrane Proteins
  • Mitochondrial Membrane Transport Proteins
  • Mitochondrial Proteins
  • Metalloendopeptidases
  • ZMPSTE24 protein, human

Supplementary concepts

  • Mandibuloacral dysplasia with type A lipodystrophy