First Experience Using 18F-Flubrobenguane PET Imaging in Patients with Suspected Pheochromocytoma or Paraganglioma

J Nucl Med. 2021 Apr;62(4):479-485. doi: 10.2967/jnumed.120.248021. Epub 2020 Aug 28.

Abstract

Pheochromocytomas and paragangliomas are a rare tumor entity originating from adrenomedullary chromaffin cells in the adrenal medulla or in sympathetic, paravertebral ganglia outside the medulla. Small lesions are especially difficult to detect by conventional CT or MRI and even by SPECT with the currently available radiotracers (e.g., metaiodobenzylguanidine [MIBG]). The novel PET radiotracer 18F-flubrobenguane could change the diagnostic paradigm in suspected pheochromocytomas and paragangliomas because of its homology with MIBG and the general advantages of PET imaging. The aim of this retrospective analysis was to evaluate 18F-flubrobenguane in pheochromocytomas and paragangliomas and to investigate the biodistribution in patients. Methods: Twenty-three patients with suspected pheochromocytoma or paraganglioma underwent PET/CT or PET/MRI at 63 ± 24 min after injection of 256 ± 33 MBq of 18F-flubrobenguane. The SUVmean and SUVmax of organs were measured with spheric volumes of interest. Threshold-segmented volumes of interest were used to measure the SUVmean or SUVmax of the tumor lesions. One reader evaluated all cross-sectional imaging datasets (CT or MRI) separately, as well as the PET hybrid datasets, and reported the lesion number and size. The diagnostic certainty for a positive lesion was scored on a 3-point scale. Results:18F-flubrobenguane showed a reproducible, stable biodistribution, with the highest SUVmax and SUVmean being in the thyroid gland (30.3 ± 2.2 and 22.5 ± 1.6, respectively), pancreas (12.2 ± 0.8 and 9.5 ± 0.7, respectively), and tumor lesions (16.8 ± 1.7 and 10.1 ± 1.1, respectively) and the lowest SUVmax and SUVmean being in muscle (1.1 ± 0.06 and 0.7 ± 0.04, respectively) and the lung (2.5 ± 0.17 and 1.85 ± 0.13, respectively). In a subgroup analysis, a significantly higher average SUVmean was seen for both pheochromocytoma and paraganglioma than for healthy adrenal glands (11.9 ± 2.0 vs. 9.9 ± 1.5 vs. 3.7 ± 0.2, respectively). In total, 47 lesions were detected. The reader reported more and smaller lesions with higher certainty in PET hybrid imaging than in conventional imaging; however, statistical significance was not reached. Of the 23 (23/47, 49%) lesions smaller than 1 cm, 61% (14/23) were found on hybrid imaging only. Conclusion: Our preliminary data suggest 18F-flubrobenguane PET to be a new, effective staging tool for patients with suspected pheochromocytoma or paraganglioma. Major advantages are the fast acquisition and high spatial resolution of PET imaging and the intense uptake in tumor lesions, facilitating detection. Further studies are warranted to define the role of 18F-flubrobenguane PET, particularly in comparison to standard diagnostic procedures such as MRI or 123I-MIBG SPECT/CT.

Keywords: F-18 flubrobenguane; PET; PET/CT; PET/MRI; paraganglioma; pheochromocytoma.

MeSH terms

  • Adrenal Gland Neoplasms / diagnostic imaging*
  • Adult
  • Aged
  • Female
  • Fluorine Radioisotopes*
  • Fluorobenzenes*
  • Guanidines*
  • Humans
  • Male
  • Middle Aged
  • Paraganglioma / diagnostic imaging*
  • Pheochromocytoma / diagnostic imaging*
  • Positron Emission Tomography Computed Tomography*
  • Retrospective Studies

Substances

  • Fluorine Radioisotopes
  • Fluorobenzenes
  • Guanidines
  • Fluorine-18
  • flubrobenguane