Therapy-Induced Evolution of Human Lung Cancer Revealed by Single-Cell RNA Sequencing

Cell. 2020 Sep 3;182(5):1232-1251.e22. doi: 10.1016/j.cell.2020.07.017. Epub 2020 Aug 20.

Abstract

Lung cancer, the leading cause of cancer mortality, exhibits heterogeneity that enables adaptability, limits therapeutic success, and remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) of metastatic lung cancer was performed using 49 clinical biopsies obtained from 30 patients before and during targeted therapy. Over 20,000 cancer and tumor microenvironment (TME) single-cell profiles exposed a rich and dynamic tumor ecosystem. scRNA-seq of cancer cells illuminated targetable oncogenes beyond those detected clinically. Cancer cells surviving therapy as residual disease (RD) expressed an alveolar-regenerative cell signature suggesting a therapy-induced primitive cell-state transition, whereas those present at on-therapy progressive disease (PD) upregulated kynurenine, plasminogen, and gap-junction pathways. Active T-lymphocytes and decreased macrophages were present at RD and immunosuppressive cell states characterized PD. Biological features revealed by scRNA-seq were biomarkers of clinical outcomes in independent cohorts. This study highlights how therapy-induced adaptation of the multi-cellular ecosystem of metastatic cancer shapes clinical outcomes.

Keywords: ALK; EGFR; lung cancer; single-cell RNA sequencing; targeted therapy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomarkers, Tumor / genetics
  • Cell Line
  • Ecosystem
  • Humans
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / pathology
  • Macrophages / pathology
  • Sequence Analysis, RNA / methods
  • Single-Cell Analysis / methods
  • T-Lymphocytes / pathology
  • Tumor Microenvironment / genetics

Substances

  • Biomarkers, Tumor