Analysis of epigenetic aging in vivo and in vitro: Factors controlling the speed and direction

Exp Biol Med (Maywood). 2020 Nov;245(17):1543-1551. doi: 10.1177/1535370220947015. Epub 2020 Aug 6.

Abstract

Aging is associated with DNA methylation (DNAm) changes. Recent advancement of the whole-genome DNAm analysis technology allowed scientists to develop DNAm-based age estimators. A majority of these estimators use DNAm data from a single tissue type such as blood. In 2013, a multi-tissue age estimator using DNAm pattern of 353 CpGs was developed by Steve Horvath. This estimator was named "epigenetic clock", and the improved version using DNAm pattern of 391 CpGs was developed in 2018. The estimated age by epigenetic clock is named DNAmAge. DNAmAge can be used as a biomarker of aging predicting the risk of age-associated diseases and mortality. Although the DNAm-based age estimators were developed, the mechanism of epigenetic aging is still enigmatic. The biological significance of epigenetic aging is not well understood, either. This minireview discusses the current understanding of the mechanism of epigenetic aging and the future direction of aging research.

Keywords: DNA methylation; age; aging; epigenetic aging; hematopoietic stem cell; hypoxia.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Aging / genetics*
  • Animals
  • Biological Clocks / genetics
  • Cell Hypoxia / genetics
  • DNA Methylation / genetics
  • Epigenesis, Genetic*
  • Hematopoietic Stem Cells / metabolism
  • Humans