Autoimmune diseases evolve from complex interactions between the immune system and self-antigens and involve several genetic attributes, environmental triggers and diverse cell types. Research using experimental mouse models has contributed key knowledge on the mechanisms that underlie these diseases in humans, but differences between the mouse and human immune systems can and, at times, do undermine the translational significance of these findings. The use of human immune system (HIS) mice enables the utility of mouse models with greater relevance for human diseases. As the name conveys, these mice are reconstituted with mature human immune cells transferred directly from peripheral blood or via transplantation of human hematopoietic stem cells that nucleate the generation of a complex human immune system. The function of the human immune system in HIS mice has improved over the years with the stepwise development of better models. HIS mice exhibit key benefits of the murine animal model, such as small size, robust and rapid reproduction and ease of experimental manipulation. Importantly, HIS mice also provide an applicable in vivo setting that permit the investigation of the physiological and pathological functions of the human immune system and its response to novel treatments. With the gaining popularity of HIS mice in the last decade, the potential of this model has been exploited for research in basic science, infectious diseases, cancer, and autoimmunity. In this review we focus on the use of HIS mice in autoimmune studies to stimulate further development of these valuable models.
Keywords: Autoimmunity; Human immune system mice; Humanized mice; SCID mice; Tolerance.
© 2019 The Author(s).