An integrative network-driven pipeline for systematic identification of lncRNA-associated regulatory network motifs in metastatic melanoma

BMC Bioinformatics. 2020 Jul 23;21(1):329. doi: 10.1186/s12859-020-03656-6.

Abstract

Background: Melanoma phenotype and the dynamics underlying its progression are determined by a complex interplay between different types of regulatory molecules. In particular, transcription factors (TFs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) interact in layers that coalesce into large molecular interaction networks. Our goal here is to study molecules associated with the cross-talk between various network layers, and their impact on tumor progression.

Results: To elucidate their contribution to disease, we developed an integrative computational pipeline to construct and analyze a melanoma network focusing on lncRNAs, their miRNA and protein targets, miRNA target genes, and TFs regulating miRNAs. In the network, we identified three-node regulatory loops each composed of lncRNA, miRNA, and TF. To prioritize these motifs for their role in melanoma progression, we integrated patient-derived RNAseq dataset from TCGA (SKCM) melanoma cohort, using a weighted multi-objective function. We investigated the expression profile of the top-ranked motifs and used them to classify patients into metastatic and non-metastatic phenotypes.

Conclusions: The results of this study showed that network motif UCA1/AKT1/hsa-miR-125b-1 has the highest prediction accuracy (ACC = 0.88) for discriminating metastatic and non-metastatic melanoma phenotypes. The observation is also confirmed by the progression-free survival analysis where the patient group characterized by the metastatic-type expression profile of the motif suffers a significant reduction in survival. The finding suggests a prognostic value of network motifs for the classification and treatment of melanoma.

Keywords: Data integration; LncRNA; Melanoma; MiRNA; Network approach; RNA motif; Systems biology; Transcription factor.

MeSH terms

  • Computational Biology / methods
  • Gene Expression Regulation, Neoplastic*
  • Gene Regulatory Networks*
  • Humans
  • Melanoma / genetics*
  • Melanoma / metabolism
  • Melanoma / mortality
  • Melanoma / pathology
  • MicroRNAs / metabolism
  • Middle Aged
  • Neoplasm Metastasis
  • Phenotype
  • RNA, Long Noncoding / metabolism*
  • RNA-Seq
  • Transcription Factors / metabolism

Substances

  • MicroRNAs
  • RNA, Long Noncoding
  • Transcription Factors