Genetic variants associated with rotator cuff tearing utilizing multiple population-based genetic resources

J Shoulder Elbow Surg. 2021 Mar;30(3):520-531. doi: 10.1016/j.jse.2020.06.036. Epub 2020 Jul 12.

Abstract

Background: The etiology of rotator cuff tearing is likely multifactorial, including a potential genetic predisposition. The purpose of the study was to identify genetic variants associated with rotator cuff tearing utilizing the UK Biobank (UKB) cohort, confirm variants using a separate genetic database, and evaluate tissue expression of genes with associated variants following rotator cuff tearing using RNA sequencing.

Methods: Genome-wide association study (GWAS): A GWAS was performed using data from UKB with 5701 cases of rotator cuff injury. RNA sequencing analyses: rotator cuff biopsies were obtained from 24 patients with full-thickness rotator cuff tears who underwent arthroscopic rotator cuff repair (cases) and 9 patients who underwent open reduction internal fixation for a proximal humerus fracture (controls). Total RNA was extracted and differential gene expression was measured by RNAseq for genes with variants associated with rotator cuff tearing.

Results: The results of the UKB GWAS identified 3 loci that reached genome-wide statistical significance: 2 loci on chromosome 7 in GLCCI1 (rs4725069; P = 5.0E-09) and THSD7A (rs575224171; P = 5.3E-09), and 1 locus on chromosome 2 in ZNF804A (rs775583810; P = 3.9E-09). The association with rotator cuff injury of the GLCCI1 single-nucleotide polymorphism (SNP; rs4725069) was confirmed in the Kaiser Permanente Research Bank cohort (P = .008). Twenty previously reported SNPs in 12 genes were evaluated using summary statistics from the UKB GWAS, which confirmed 3 SNPs in TNC with rotator cuff injury (rs1138545, rs72758637, and rs7021589; all P < .0024). Of 17 genes with variants associated with rotator cuff injury (14 previously from literature plus 3 new genes from current UKB GWAS), TIMP2, Col5A1, TGFBR1, and TNC were upregulated (P < .001 for all) and THSD7A was downregulated (P = .005) in tears vs. controls in the RNA sequencing data set.

Conclusion: The UKB GWAS has identified 3 novel loci associated with rotator cuff tearing (ZNF804A, GLCCI1, THSD7A). Expression of the THSD7A gene was significantly downregulated in rotator cuff tears vs. controls supporting a potential functional role. Three previously reported SNPs in the TNC gene were validated in the UKB GWAS, supporting a role for this gene in rotator cuff tearing. Finally, TIMP2, Col5A1, TGFBR1, and TNC genes were found to have significantly upregulated tissue expression in cases vs. controls supporting a biologic role in tearing for these genes.

Keywords: RNA sequencing; Rotator cuff; genome-wide association study.

MeSH terms

  • Arthroscopy
  • Genetic Predisposition to Disease
  • Genome-Wide Association Study
  • Humans
  • Kruppel-Like Transcription Factors
  • Polymorphism, Single Nucleotide
  • Rotator Cuff Injuries* / genetics
  • Rotator Cuff*

Substances

  • Kruppel-Like Transcription Factors
  • ZNF804A protein, human