DNA-protein crosslinks (DPCs) are highly toxic DNA lesions that threaten genomic integrity. Recent findings highlight that SPRTN, a specialized DNA-dependent metalloprotease, is a central player in proteolytic cleavage of DPCs. Previous studies suggest that SPRTN deubiquitination is important for its chromatin association and activation. However, the regulation and consequences of SPRTN deubiquitination remain unclear. Here we report that, in response to DPC induction, the deubiquitinase VCPIP1/VCIP135 is phosphorylated and activated by ATM/ATR. VCPIP1, in turn, deubiquitinates SPRTN and promotes its chromatin relocalization. Deubiquitination of SPRTN is required for its subsequent acetylation, which promotes SPRTN relocation to the site of chromatin damage. Furthermore, Vcpip1 knockout mice are prone to genomic instability and premature aging. We propose a model where two sequential post-translational modifications (PTMs) regulate SPRTN chromatin accessibility to repair DPCs and maintain genomic stability and a healthy lifespan.
Keywords: DNA repair; DNA-protein crosslink; SPRTN; Top1cc; VCPIP1/VCIP135; acetylation; aging; genomic instability; metalloprotease; ubiquitination.
Copyright © 2020 Elsevier Inc. All rights reserved.