Nanomaterials (NMs) are comprehensively applied in biomedicine due to their unique physical and chemical properties. Autophagy, as an evolutionarily conserved cellular quality control process, is closely associated with the effect of NMs on cells. In this review, the recent advances in NM-induced/inhibited autophagy (NM-phagy) are summarized, with an aim to present a comprehensive description of the mechanisms of NM-phagy from the perspective of internalization, activation, and termination, thereby bridging autophagy and nanomaterials. Several possible mechanisms are extensively reviewed including the endocytosis pathway of NMs and the related cross components (clathrin and adaptor protein 2 (AP-2), adenosine diphosphate (ADP)-ribosylation factor 6 (Arf6), Rab, UV radiation resistance associated gene (UVRAG)), three main stress mechanisms (oxidative stress, damaged organelles stress, and toxicity stress), and several signal pathway-related molecules. The mechanistic insight is beneficial to understand the autophagic response to NMs or NMs' regulation of autophagy. The challenges currently encountered and research trend in the field of NM-phagy are also highlighted. It is hoped that the NM-phagy discussion in this review with the focus on the mechanistic aspects may serve as a guideline for future research in this field.
Keywords: autophagy; endocytosis; mechanisms; nanomaterials; stress.
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.