Background: Little is known about whether UVB can directly influence epigenetic regulatory pathways to induce cutaneous squamous cell carcinoma (CSCC). This study aimed to identify epigenetic-regulated signalling pathways through global methylation and gene expression profiling and to elucidate their function in CSCC development.
Methods: Global DNA methylation profiling by reduced representation bisulfite sequencing (RRBS) and genome-wide gene expression analysis by RNA sequencing (RNA-seq) in eight pairs of matched CSCC and adjacent normal skin tissues were used to investigate the potential candidate gene(s). Clinical samples, animal models, cell lines, and UVB irradiation were applied to validate the mechanism and function of the genes of interest.
Findings: We identified the downregulation of the TGF-β/BMP-SMAD-ID4 signalling pathway in CSCC and increased methylation of inhibitor of DNA binding/differentiation 4 (ID4). In normal human and mouse skin tissues and cutaneous cell lines, UVB exposure induced ID4 DNA methylation, upregulated DNMT1 and downregulated ten-eleven translocation (TETs). Similarly, we detected the upregulation of DNMT1 and downregulation of TETs accompanying ID4 DNA methylation in CSCC tissues. Silencing of DNMT1 and overexpression of TET1 and TET2 in A431 and Colo16 cells led to increased ID4 expression. Finally, we showed that overexpression of ID4 reduced cell proliferation, migration, and invasion, and increased apoptosis in CSCC cell lines and reduced tumourigenesis in mouse models.
Interpretation: The results indicate that ID4 is downregulated by UVB irradiation via DNA methylation. ID4 acts as a tumour suppressor gene in CSCC development.
Funding: CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-I2M-3-021, 2017-I2M-1-017), the Natural Science Foundation of Jiangsu Province (BK20191136), and the Fundamental Research Funds for the Central Universities (3332019104).
Keywords: Cutaneous squamous cell carcinoma; DNA (cytosine-5-)-methyltransferase; DNA-binding proteins; Methylation; Ten-eleven translocation; Ultraviolet rays.
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.