Electronic health record data can be used in multiple ways to facilitate real-world pragmatic studies. Electronic health record data can provide detailed information about utilization of treatment options to help identify appropriate comparison groups, access historical clinical characteristics of participants, and facilitate measuring longitudinal outcomes for the treatments being studied. An additional novel use of electronic health record data is to assess and understand referral pathways and other business practices that encourage or discourage patients from using different types of care. We describe an ongoing study utilizing access to real-time electronic health record data about changing patterns of complementary and integrative health services to demonstrate how electronic health record data can provide the foundation for a pragmatic study when randomization is not feasible. Conducting explanatory trials of the value of emerging therapies within a healthcare system poses ethical and pragmatic challenges, such as withholding access to specific services that are becoming widely available to patients. We describe how prospective examination of real-time electronic health record data can be used to construct and understand business practices as potential surrogates for direct randomization through an instrumental variables analytic approach. In this context, an example of a business practice is the internal hiring of acupuncturists who also provide yoga or Tai Chi classes and can offer these classes without additional cost compared to community acupuncturists. Here, the business practice of hiring internal acupuncturists is likely to encourage much higher rates of combined complementary and integrative health use compared to community referrals. We highlight the tradeoff in efficiency of this pragmatic approach and describe use of simulations to estimate the potential sample sizes needed for a variety of instrument strengths. While real-time monitoring of business practices from electronic health records provides insights into the validity of key independence assumptions associated with the instrumental variable approaches, we note that there may be some residual confounding by indication or selection bias and describe how alternative sources of electronic health record data can be used to assess the robustness of instrumental variable assumptions to address these challenges. Finally, we also highlight that while some clinical outcomes can be obtained directly from the electronic health record, such as longitudinal opioid utilization and pain intensity levels for the study of the value of complementary and integrative health, it is often critical to supplement clinical electronic health record-based measures with patient-reported outcomes. The experience of this example in evaluating complementary and integrative health demonstrates the use of electronic health record data in several novel ways that may be of use for designing future pragmatic trials.
Keywords: Confounding bias; complementary and integrative health; instrumental variables; pain; pragmatic trial; self-management.