Potently neutralizing human antibodies that block SARS-CoV-2 receptor binding and protect animals

bioRxiv [Preprint]. 2020 May 22:2020.05.22.111005. doi: 10.1101/2020.05.22.111005.

Abstract

The COVID-19 pandemic is a major threat to global health for which there are only limited medical countermeasures, and we lack a thorough understanding of mechanisms of humoral immunity 1,2 . From a panel of monoclonal antibodies (mAbs) targeting the spike (S) glycoprotein isolated from the B cells of infected subjects, we identified several mAbs that exhibited potent neutralizing activity with IC 50 values as low as 0.9 or 15 ng/mL in pseudovirus or wild-type ( wt ) SARS-CoV-2 neutralization tests, respectively. The most potent mAbs fully block the receptor-binding domain of S (S RBD ) from interacting with human ACE2. Competition-binding, structural, and functional studies allowed clustering of the mAbs into defined classes recognizing distinct epitopes within major antigenic sites on the S RBD . Electron microscopy studies revealed that these mAbs recognize distinct conformational states of trimeric S protein. Potent neutralizing mAbs recognizing unique sites, COV2-2196 and COV2-2130, bound simultaneously to S and synergistically neutralized authentic SARS-CoV-2 virus. In two murine models of SARS-CoV-2 infection, passive transfer of either COV2-2916 or COV2-2130 alone or a combination of both mAbs protected mice from severe weight loss and reduced viral burden and inflammation in the lung. These results identify protective epitopes on the S RBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic cocktails.

Publication types

  • Preprint