Association Analysis and Meta-Analysis of Multi-Allelic Variants for Large-Scale Sequence Data

Genes (Basel). 2020 May 25;11(5):586. doi: 10.3390/genes11050586.

Abstract

There is great interest in understanding the impact of rare variants in human diseases using large sequence datasets. In deep sequence datasets of >10,000 samples, ~10% of the variant sites are observed to be multi-allelic. Many of the multi-allelic variants have been shown to be functional and disease-relevant. Proper analysis of multi-allelic variants is critical to the success of a sequencing study, but existing methods do not properly handle multi-allelic variants and can produce highly misleading association results. We discuss practical issues and methods to encode multi-allelic sites, conduct single-variant and gene-level association analyses, and perform meta-analysis for multi-allelic variants. We evaluated these methods through extensive simulations and the study of a large meta-analysis of ~18,000 samples on the cigarettes-per-day phenotype. We showed that our joint modeling approach provided an unbiased estimate of genetic effects, greatly improved the power of single-variant association tests among methods that can properly estimate allele effects, and enhanced gene-level tests over existing approaches. Software packages implementing these methods are available online.

Keywords: GWAS; meta-analysis; multi-allelic variants; smoking.

Publication types

  • Meta-Analysis
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alleles
  • Cigarette Smoking / genetics*
  • Data Interpretation, Statistical
  • Female
  • Genetic Predisposition to Disease*
  • Genetic Variation / genetics
  • Genome-Wide Association Study / statistics & numerical data*
  • Humans
  • Male
  • Phenotype
  • Polymorphism, Single Nucleotide / genetics
  • Rare Diseases / epidemiology
  • Rare Diseases / genetics*
  • Rare Diseases / pathology