Background: Cholesterol efflux capacity is a tissue culture assay for HDL function that is not amenable for high-throughput monitoring of risk assessment.
Methods: We devised a cell-free HDL function assay to measure the exchange rate of exogenous apoA1 into serum HDL using NBD/Alexa647 double-labeled apoA1, whose NBD/Alexa647 emission ratio increased upon exchange into HDL. ApoA1 exchange rate (AER) was assayed by incubating labeled apoA1 with human serum, and the rate of the increase of the NBD/Alexa647 ratio over time was calculated as AER.
Results: Fast protein liquid chromatography analysis of serum confirmed that the labeled apoA1 selectively exchanged into the HDL lipoprotein fraction. Characterization studies demonstrated that the AER assay had excellent intra- and inter-day reproducibility, was stable over 3 freeze-thaw cycles, and yielded similar results with serum or plasma. We quantified AER in serum from randomly selected stable subjects undergoing elective diagnostic coronary angiography (n = 997). AER was correlated with HDL-cholesterol (r = 0.58, P < 0.0001) and apoA1 levels (r = 0.56, P < 0.0001). Kaplan-Meier survival plot showed subjects in the lowest quartile of AER experienced a significantly higher rate of incident major adverse cardiovascular events (MACE = myocardial infarction, stroke, or death) (P < 0.0069 log rank). Moreover, compared to subjects in the lowest AER quartile, the remaining subjects showed significantly lower incident (3 year) risk for MACE, even after adjustment for traditional risk factors and apoA1 (HR 0.58; 95% CI 0.40-0.85; P = 0.005).
Conclusions: In a prospective cohort of stable subjects undergoing elective diagnostic cardiac evaluations, low AER was associated with increased incident risk of MACE.
Keywords: ApoA1 exchange rate; HDL; major adverse cardiovascular events.
© American Association for Clinical Chemistry 2020. All rights reserved. For permissions, please email: journals.permissions@oup.com.