Single-cell analysis of murine fibroblasts identifies neonatal to adult switching that regulates cardiomyocyte maturation

Nat Commun. 2020 May 22;11(1):2585. doi: 10.1038/s41467-020-16204-w.

Abstract

Cardiac maturation lays the foundation for postnatal heart development and disease, yet little is known about the contributions of the microenvironment to cardiomyocyte maturation. By integrating single-cell RNA-sequencing data of mouse hearts at multiple postnatal stages, we construct cellular interactomes and regulatory signaling networks. Here we report switching of fibroblast subtypes from a neonatal to adult state and this drives cardiomyocyte maturation. Molecular and functional maturation of neonatal mouse cardiomyocytes and human embryonic stem cell-derived cardiomyocytes are considerably enhanced upon co-culture with corresponding adult cardiac fibroblasts. Further, single-cell analysis of in vivo and in vitro cardiomyocyte maturation trajectories identify highly conserved signaling pathways, pharmacological targeting of which substantially delays cardiomyocyte maturation in postnatal hearts, and markedly enhances cardiomyocyte proliferation and improves cardiac function in infarcted hearts. Together, we identify cardiac fibroblasts as a key constituent in the microenvironment promoting cardiomyocyte maturation, providing insights into how the manipulation of cardiomyocyte maturity may impact on disease development and regeneration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Age Factors
  • Animals
  • Animals, Newborn
  • Culture Media, Conditioned / pharmacology
  • Female
  • Fibroblasts / cytology
  • Fibroblasts / physiology*
  • Heart / growth & development
  • Humans
  • Male
  • Mice, Inbred C57BL
  • Myocardial Infarction / pathology*
  • Myocytes, Cardiac / cytology*
  • Myocytes, Cardiac / physiology*
  • Signal Transduction
  • Single-Cell Analysis

Substances

  • Culture Media, Conditioned