Lakes at Risk of Chloride Contamination

Environ Sci Technol. 2020 Jun 2;54(11):6639-6650. doi: 10.1021/acs.est.9b07718. Epub 2020 May 13.

Abstract

Lakes in the Midwest and Northeast United States are at risk of anthropogenic chloride contamination, but there is little knowledge of the prevalence and spatial distribution of freshwater salinization. Here, we use a quantile regression forest (QRF) to leverage information from 2773 lakes to predict the chloride concentration of all 49 432 lakes greater than 4 ha in a 17-state area. The QRF incorporated 22 predictor variables, which included lake morphometry characteristics, watershed land use, and distance to the nearest road and interstate. Model predictions had an r2 of 0.94 for all chloride observations, and an r2 of 0.86 for predictions of the median chloride concentration observed at each lake. The four predictors with the largest influence on lake chloride concentrations were low and medium intensity development in the watershed, crop density in the watershed, and distance to the nearest interstate. Almost 2000 lakes are predicted to have chloride concentrations above 50 mg L-1 and should be monitored. We encourage management and governing agencies to use lake-specific model predictions to assess salt contamination risk as well as to augment their monitoring strategies to more comprehensively protect freshwater ecosystems from salinization.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chlorides
  • Ecosystem*
  • Environmental Monitoring
  • Lakes*
  • New England
  • Sodium Chloride

Substances

  • Chlorides
  • Sodium Chloride