Background: Despite treatment with pancreatic enzyme replacement therapy (PERT), patients with cystic fibrosis (CF) can still suffer from fat malabsorption. A cause could be low intestinal pH disabling PERT. The aim of this study was to assess the association between faecal pH (as intestinal pH surrogate) and coefficient of fat absorption (CFA). Additionally, faecal free fatty acids (FFAs) were quantified to determine the amount of digested, but unabsorbed fat.
Methods: In a 24-h pilot study, CF patients followed a standardised diet with fixed PERT doses, corresponding to theoretical optimal doses determined by an in vitro digestion model. Study variables were faecal pH, fat and FFA excretion, CFA and transit time. Linear mixed regression models were applied to explore associations.
Results: In 43 patients, median (1st, 3rd quartile) faecal pH and CFA were 6.1% (5.8, 6.4) and 90% (84, 94), and they were positively associated (p < 0.001). An inverse relationship was found between faecal pH and total fat excretion (p < 0.01), as well as total FFA (p = 0.048). Higher faecal pH was associated with longer intestinal transit time (p = 0.049) and the use of proton pump inhibitors (p = 0.009).
Conclusions: Although the clinical significance of faecal pH is not fully defined, its usefulness as a surrogate biomarker for intestinal pH should be further explored.
Impact: Faecal pH is a physiological parameter that may be related to intestinal pH and may provide important physiopathological information on CF-related pancreatic insufficiency. Faecal pH is correlated with fat absorption, and this may explain why pancreatic enzyme replacement therapy is not effective in all patients with malabsorption related to CF. Use of proton pump inhibitors is associated to higher values of faecal pH. Faecal pH could be used as a surrogate biomarker to routinely monitor the efficacy of pancreatic enzyme replacement therapy in clinical practice. Strategies to increase intestinal pH in children with cystic fibrosis should be targeted.