Scopoletin is a botanical coumarin. Notably, scopoletin effect on phagocytic activity has not been addressed on transcriptomic level. Accordingly, this study investigated the effect of scopoletin on phagocytosis-linked gene transcription. Whole phagocytosis transcriptional profiling of stimulated U937-derived macrophages (SUDMs) in response to scopoletin as compared to non-treated SUDMs was studied. Regarding scopoletin effect on 92 phagocytosis-linked genes, 12 of them were significantly affected (p-value < .05). Seven genes were downregulated (CDC42, FCGR1A/FCGR1C, ITGA9, ITGB3, PLCE1, RHOD & RND3) and five were upregulated (DIRAS3, ITGA1, PIK3CA, PIK3R3 & PLCD1). Moreover, scopoletin enhanced phagocytic activity of SUDMs. The current results highlighted the potential use of scopoletin as immunity booster and as an adjuvant remedy in management of some autoimmune reactions. To the best of our knowledge, this is the first report that unravels the effect of scopoletin on phagocytosis via transcriptomic analysis.
Keywords: Immunity booster; Macrophages; Phagocytosis; Scopoletin; Transcriptomic; U937-derived macrophages.
Copyright © 2020 Elsevier Inc. All rights reserved.