Background: Cells detaching from the primary tumor site are metastasis initiator cells, and the detection of CTC, known as liquid biopsy, is an important test of biomarkers of cancer progression. We investigated the molecular characterization of circulating tumor cells (CTCs), profiled the plasma microRNA (miR) content, and analyzed the relationship with the clinical outcomes by sampling the peripheral blood from patients with locally advanced breast cancer before and after neoadjuvant chemotherapy.
Patients and methods: Markers of breast cancer, epithelial-mesenchymal transition (EMT), drug resistance, and stem cells were used for CTC isolation and characterization. Plasma miR profiles were obtained from selected patients with CTC positivity determined using next-generation sequencing.
Results: The proportion of CTC, EMT, and stem cell marker positivity was 16.7%, 8.3%, and 25% before and 18.2%, 15.2%, and 9.1% after treatment, respectively. A significant correlation was found between the pretreatment CTCs and ALDH1 positivity (P = .0245). These CTCs with stemness properties were observed in most hormone receptor-positive, human epidermal growth factor receptor 2-negative cases and were also present with a high incidence in cases of early metastasis. miR-146b-5p and miR-199a-5p, which are involved in metastasis, invasion, and EMT, were accompanied by CTC positivity, and miR-4646-3p was associated with the development of early metastasis.
Conclusions: Molecular characterization of CTCs and miR profiling of serial samples from patients with locally advanced breast cancer during neoadjuvant chemotherapy appears to be a very useful in predicting cure and clinical course and might be a key to developing new targeted therapies.
Keywords: Breast cancer; CTCs; EMT; NACT; Stem cell marker.
Copyright © 2020 Elsevier Inc. All rights reserved.