LncRNA MALAT1 silencing protects against cerebral ischemia-reperfusion injury through miR-145 to regulate AQP4

J Biomed Sci. 2020 Mar 6;27(1):40. doi: 10.1186/s12929-020-00635-0.

Abstract

Background: The present study aimed to verify whether long noncoding RNA (lncRNA) MALAT1 is involved in brain tissue damage induced by ischemia-reperfusion injury, and to explore the mechanism by which MALAT1 regulates aquaporin 4 (AQP4).

Methods: In this study, we established glucose deprivation (OGD)/reoxygenation (RX) astrocyte cell model and middle cerebral artery occlusion (MCAO)/reperfusion mouse model in vitro and in vivo. Then cell counting kit-8 assay, flow cytometry analysis, Triphenyltetrazolium chloride (TTC) staining, and western blotting were used to determine cell viability, cell apoptosis, cerebral infarction volume, and the abundance of AQP4, respectively.

Results: We found that the level of MALAT1 was significantly upregulated in both the MCAO/reperfusion model and OGD/RX model. Knockdown of MALAT1 increased cell viability and reduced cell apoptosis in MA-C cells, while an AQP4 siRNA combined with a siRNA targeting MALAT1 could not enhance this effect. Further experiments showed that MALAT1 positively regulated AQP4 expression via miR-145. The MALAT1 siRNA did not alleviate the exacerbation of damage after miR-145 inhibitor action. However, an miR-145 inhibitor reversed the protection effects of MALAT1, indicating that MALAT1 silencing protects against cerebral ischemia-reperfusion injury through miR-145. TTC staining showed that the infracted area of whole brain was significantly attenuated in treated with sh-MALAT1 group in vivo.

Conclusion: Taken together, our study confirmed that MALAT1 promotes cerebral ischemia-reperfusion injury by affecting AQP4 expression through competitively binding miR-145, indicating that MALAT1 might be a new therapeutic target for treatment cerebral ischemic stroke.

Keywords: AQP4; Cerebral ischemia-reperfusion injury; MALAT1; miR-145.

MeSH terms

  • Animals
  • Aquaporin 4 / genetics*
  • Aquaporin 4 / metabolism
  • Gene Expression Regulation*
  • Gene Silencing*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism
  • RNA, Long Noncoding / genetics*
  • RNA, Long Noncoding / metabolism
  • Reperfusion Injury / genetics*
  • Up-Regulation

Substances

  • Aqp4 protein, mouse
  • Aquaporin 4
  • MIRN145a microRNA, mouse
  • Malat1 long non-coding RNA, mouse
  • MicroRNAs
  • RNA, Long Noncoding