Actin assembly ruptures the nuclear envelope by prying the lamina away from nuclear pores and nuclear membranes in starfish oocytes

Elife. 2020 Jan 28:9:e49774. doi: 10.7554/eLife.49774.

Abstract

The nucleus of oocytes (germinal vesicle) is unusually large and its nuclear envelope (NE) is densely packed with nuclear pore complexes (NPCs) that are stockpiled for embryonic development. We showed that breakdown of this specialized NE is mediated by an Arp2/3-nucleated F-actin 'shell' in starfish oocytes, in contrast to microtubule-driven tearing in mammalian fibroblasts. Here, we address the mechanism of F-actin-driven NE rupture by correlated live-cell, super-resolution and electron microscopy. We show that actin is nucleated within the lamina, sprouting filopodia-like spikes towards the nuclear membranes. These F-actin spikes protrude pore-free nuclear membranes, whereas the adjoining stretches of membrane accumulate NPCs that are associated with the still-intact lamina. Packed NPCs sort into a distinct membrane network, while breaks appear in ER-like, pore-free regions. We reveal a new function for actin-mediated membrane shaping in nuclear rupture that is likely to have implications in other contexts, such as nuclear rupture observed in cancer cells.

Keywords: cell biology; electron microscopy; nuclear envelope; oocyte meiosis; starfish oocytes; superresolution.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actins* / chemistry
  • Actins* / metabolism
  • Animals
  • Microscopy, Electron
  • Nuclear Envelope* / chemistry
  • Nuclear Envelope* / metabolism
  • Nuclear Envelope* / ultrastructure
  • Nuclear Lamina / chemistry
  • Nuclear Lamina / metabolism
  • Nuclear Pore / chemistry
  • Nuclear Pore / metabolism
  • Oocytes / cytology*
  • Starfish

Substances

  • Actins