Background: MicroRNAs (miRNAs) and Twist1-induced epithelial-mesenchymal transition (EMT) in cancer cell dissemination are well established, but the involvement of long noncoding RNAs (lncRNAs) in Twist1-mediated signaling remains largely unknown.
Methods: RT-qPCR and western blotting were conducted to detect the expression levels of lncRNA JPX and Twist1 in lung cancer cell lines and tissues. The impact of JPX on Twist1 expression, cell growth, invasion, apoptosis, and in vivo tumor growth were investigated in lung cancer cells by western blotting, rescue experiments, colony formation assay, flow cytometry, and xenograft animal experiment.
Results: We observed that lncRNA JPX was upregulated in lung cancer metastatic tissues and was closely correlated with tumor size and an advanced stage. Functionally, JPX promoted lung cancer cell proliferation in vitro and facilitated lung tumor growth in vivo. Additionally, JPX upregulated Twist1 by competitively sponging miR-33a-5p and subsequently induced EMT and lung cancer cell invasion. Interestingly, JPX and Twist1 were coordinately upregulated in lung cancer tissues and cells. Mechanically, the JPX/miR-33a-5p/Twist1 axis participated in EMT progression by activating Wnt/β-catenin signaling.
Conclusions: These findings suggest that lncRNA JPX, a mediator of Twist1 signaling, could predispose lung cancer cells to metastasis and may serve as a potential target for targeted therapy.
Keywords: Epithelial-mesenchymal transition; Long noncoding RNA; Lung cancer; Twist1; Wnt/β-catenin signaling.