The cellular membrane is very heterogenous and enriched with high-density regions forming microdomains, as revealed by single particle tracking experiments. However the organization of these regions remain unexplained. We determine here the biophysical properties of these regions, when described as a basin of attraction. We develop two methods to recover the dynamics and local potential wells (field of force and boundary). The first method is based on the local density of points distribution of trajectories, which differs inside and outside the wells. The second method focuses on recovering the drift field that is convergent inside wells and uses the transient field to determine the boundary. Finally, we apply these two methods to the distribution of trajectories recorded from voltage gated calcium channels and phospholipid anchored GFP in the cell membrane of hippocampal neurons and obtain the size and energy of high-density regions with a nanometer precision.