Mucosal-associated invariant T (MAIT) cells can be found throughout the human body, in peripheral blood, at mucosal sites, and, among other organs, in the liver. As unconventional T cells, MAIT cells have the capacity to readily respond to bacterial infections and are also engaged during anti-viral responses. To thoroughly investigate the MAIT cell phenotype and function in such conditions, multi-color flow cytometry is an appropriate and powerful tool. Yet, the recent rapid technological development within this methodology, with generation of highly complex data, has increased the need for downstream dimensionality reducing methods to fully interpret obtained results. Among such methods, stochastic neighbor embedding (SNE) analysis stands out as it provides intuitive low-dimensional representations of complex data. Here, we describe techniques and workflow for high-dimensional state-of-the-art investigation and analysis of human MAIT cells from blood and peripheral tissues.
Keywords: Human; Immunophenotyping; MAIT cells; Multi-color flow cytometry; SNE.