Biocorona-induced modifications in engineered nanomaterial-cellular interactions impacting biomedical applications

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020 May;12(3):e1608. doi: 10.1002/wnan.1608. Epub 2019 Dec 1.

Abstract

When nanoparticles (NPs) enter a physiological environment, a complex coating of biomolecules is absorbed onto their surface, known as the biocorona (BC). This coating alters nanomaterial physical properties, modulating cellular viability, internalization, and immune responses. To safely utilize NPs within medical settings, it is necessary to understand the influence of the BC on cellular responses. Due to the variety of cell types, NPs, and physiological environments, responses are variable; though trends do exist. This review article critically evaluates the currently available literature regarding the influence of the BC on NP interactions with prominent cell types that they are likely to encounter during biomedical applications. Specifically, we will examine responses related to interactions with endothelial cells, macrophages, and epithelial cells of the digestive tract and lung. Further, we will evaluate how the BC may influence interactions with bacteria and fungi, as NPs have been proposed as antimicrobial agents in medical settings. The information reviewed and discussed here may enhance the development of effective of NP-based therapeutics and diagnostic tools. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Diagnostic Tools > Diagnostic Nanodevices.

Keywords: cell interactions; corona; disease environments; nanomedicine; toxicology.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Biomedical Technology*
  • Cell Communication*
  • Cells / metabolism
  • Humans
  • Nanostructures / chemistry*
  • Protein Corona / chemistry*

Substances

  • Protein Corona