Interferon target-gene expression and epigenomic signatures in health and disease

Nat Immunol. 2019 Dec;20(12):1574-1583. doi: 10.1038/s41590-019-0466-2. Epub 2019 Nov 19.

Abstract

Multiple type I interferons and interferon-γ (IFN-γ) are expressed under physiological conditions and are increased by stress and infections, and in autoinflammatory and autoimmune diseases. Interferons activate the Jak-STAT signaling pathway and induce overlapping patterns of expression, called 'interferon signatures', of canonical interferon-stimulated genes (ISGs) encoding molecules important for antiviral responses, antigen presentation, autoimmunity and inflammation. It has now become clear that interferons also induce an 'interferon epigenomic signature' by activating latent enhancers and 'bookmarking' chromatin, thus reprogramming cell responses to environmental cues. The interferon epigenomic signature affects ISGs and other gene sets, including canonical targets of the transcription factor NF-κB that encode inflammatory molecules, and is involved in the priming of immune cells, tolerance and the training of innate immune memory. Here we review the mechanisms through which interferon signatures and interferon epigenomic signatures are generated, as well as the expression and functional consequences of these signatures in homeostasis and autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis and systemic sclerosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Autoimmune Diseases / immunology*
  • Autoimmunity
  • Epigenesis, Genetic / immunology*
  • Homeostasis
  • Humans
  • Immune Tolerance
  • Inflammation / immunology*
  • Interferon Type I / genetics
  • Interferon Type I / metabolism*
  • Janus Kinases / metabolism
  • Lymphocyte Activation
  • NF-kappa B / metabolism
  • STAT Transcription Factors / metabolism
  • Signal Transduction
  • Transcriptome

Substances

  • Interferon Type I
  • NF-kappa B
  • STAT Transcription Factors
  • Janus Kinases