Chromatinization of Escherichia coli with archaeal histones

Elife. 2019 Nov 6:8:e49038. doi: 10.7554/eLife.49038.

Abstract

Nucleosomes restrict DNA accessibility throughout eukaryotic genomes, with repercussions for replication, transcription, and other DNA-templated processes. How this globally restrictive organization emerged during evolution remains poorly understood. Here, to better understand the challenges associated with establishing globally restrictive chromatin, we express histones in a naive system that has not evolved to deal with nucleosomal structures: Escherichia coli. We find that histone proteins from the archaeon Methanothermus fervidus assemble on the E. coli chromosome in vivo and protect DNA from micrococcal nuclease digestion, allowing us to map binding footprints genome-wide. We show that higher nucleosome occupancy at promoters is associated with lower transcript levels, consistent with local repressive effects. Surprisingly, however, this sudden enforced chromatinization has only mild repercussions for growth unless cells experience topological stress. Our results suggest that histones can become established as ubiquitous chromatin proteins without interfering critically with key DNA-templated processes.

Keywords: E. coli; Methanothermus fervidus; chromatin; chromosomes; evolution; evolutionary biology; gene expression; histones.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromosomes, Bacterial / metabolism*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism*
  • Gene Expression
  • Histones / genetics
  • Histones / metabolism*
  • Methanobacteriales / enzymology*
  • Nucleosomes / metabolism*
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism*

Substances

  • Histones
  • Nucleosomes
  • Recombinant Proteins

Associated data

  • GEO/GSE127680
  • GEO/GSE99730
  • GEO/GSE70370
  • GEO/GSE85760
  • GEO/GSE64349
  • GEO/GSE25408