Persistent organic pollutants (POPs) cause a significant public and environmental health concern due to their toxicity, long-range transportability, persistence, and bioaccumulation. The US Food and Drug Administration (FDA) has a program to monitor POPs in human and animal foods at ultra-trace levels, using gas chromatography coupled with mass spectrometry (GC-MS). Stringent quality control procedures are practiced within this program, ensuring the reliability and accuracy of these POP results. Due to the complexity of this program's quality control (QC), the decision-making process for data usability was very time-consuming, upward of three analyst hours for a batch of six extracts. We significantly reduced this time by developing a software kit, written in Python, to evaluate instrument and sample QC, along with data usability. A diverse set of 45 samples were tested using our software, QUICK (Quality and Usability Investigation and Control Kit), that resulted in equivalent results provided by a human reviewer. The software improved the efficiency of the analytical process by reducing the need for user intervention, while simultaneously recognizing a 95% decrease in data reduction time, from 3 hours to 10 minutes.
Keywords: data usability; gas chromatography–mass spectrometry (GC–MS); persistent organic pollutants; quality control.