Observer-independent assessment of psoriasis-affected area using machine learning

J Eur Acad Dermatol Venereol. 2020 Jun;34(6):1362-1368. doi: 10.1111/jdv.16002. Epub 2020 Jan 23.

Abstract

Background: Assessment of psoriasis severity is strongly observer-dependent, and objective assessment tools are largely missing. The increasing number of patients receiving highly expensive therapies that are reimbursed only for moderate-to-severe psoriasis motivates the development of higher quality assessment tools.

Objective: To establish an accurate and objective psoriasis assessment method based on segmenting images by machine learning technology.

Methods: In this retrospective, non-interventional, single-centred, interdisciplinary study of diagnostic accuracy, 259 standardized photographs of Caucasian patients were assessed and typical psoriatic lesions were labelled. Two hundred and three of those were used to train and validate an assessment algorithm which was then tested on the remaining 56 photographs. The results of the algorithm assessment were compared with manually marked area, as well as with the affected area determined by trained dermatologists.

Results: Algorithm assessment achieved accuracy of more than 90% in 77% of the images and differed on average 5.9% from manually marked areas. The difference between algorithm-predicted and photograph-based estimated areas by physicians was 8.1% on average.

Conclusion: The study shows the potential of the evaluated technology. In contrast to the Psoriasis Area and Severity Index (PASI), it allows for objective evaluation and should therefore be developed further as an alternative method to human assessment.

Publication types

  • Validation Study

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Humans
  • Machine Learning*
  • Middle Aged
  • Neural Networks, Computer
  • Observer Variation
  • Photography
  • Psoriasis / diagnostic imaging*
  • Psoriasis / pathology
  • Reproducibility of Results
  • Retrospective Studies
  • Severity of Illness Index*
  • Young Adult