The polydimethylsiloxane (PDMS) membrane commonly used for separation of biobutanol from fermentation broth fails to meet demand owing to its discontinuous and polluting thermal fabrication. Now, an UV-induced polymerization strategy is proposed to realize the ultrafast and continuous fabrication of the PDMS membrane. UV-crosslinking of synthesized methacrylate-functionalized PDMS (MA-PDMS) is complete within 30 s. The crosslinking rate is three orders of magnitude larger than the conventional thermal crosslinking. The MA-PDMS membrane shows a versatile potential for liquid and gas separations, especially featuring an excellent pervaporation performance for n-butanol. Filler aggregation, the major bottleneck for the development of high-performance mixed matrix membranes (MMMs), is overcome, because the UV polymerization strategy demonstrates a freezing effect towards fillers in polymer, resulting in an extremely high-loading silicalite-1/MA-PDMS MMM with uniform particle distribution.
Keywords: UV polymerization; membranes; n-butanol; pervaporation; polymers.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.