MicroRNA-Related Genetic Variants Are Associated With Diabetic Retinopathy in Type 1 Diabetes Mellitus

Invest Ophthalmol Vis Sci. 2019 Sep 3;60(12):3937-3942. doi: 10.1167/iovs.18-25570.

Abstract

Purpose: Few studies have explored the association of genetic variants in microRNA genes and binding sites with diabetic retinopathy (DR) in type 1 diabetes. We conducted a genome-wide scan for single nucleotide polymorphisms (SNPs) in these genes by using data from a genome-wide association study (GWAS).

Methods: All known SNPs were imputed from our GWAS data (n = 325) of DR cases and diabetic controls (no DR). Relevant SNPS were extracted using miRNASNP and PolymiRTS (version 2) databases. χ2 tests and logistic regression (adjusting for age, sex, duration of diabetes, HbA1c, and hypertension) were used to test the association between the imputed SNPs and DR phenotypes (any DR, nonproliferative DR [NPDR], proliferative DR [PDR], diabetic macular edema [DME], and sight-threatening DR defined as PDR, severe NPDR, or clinically significant macula edema [CSME]) compared with diabetic controls. Top-ranking SNPs were genotyped in a larger cohort (N = 560) to confirm their association with DR.

Results: Three SNPs (rs10061133, rs1049835, rs9501255) were selected and genotyped in the final cohort. Rs10061133 in MIR449b was protective of sight-threatening DR (odds ratio [OR] = 0.32, P = 3.68 × 10-4) and PDR (OR = 0.30, P = 8.12 × 10-4), and the associations became more significant as the cohort increased in size.

Conclusions: Rs10061133 in MIR449b is significantly associated with a decreased risk of PDR and sight-threatening DR in Caucasian patients with type 1 diabetes. This can guide future studies on genetic risk profiling and on developing microRNA-related therapies for sight-threatening DR.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Blood Glucose / metabolism
  • Cohort Studies
  • Diabetes Mellitus, Type 1 / complications
  • Diabetic Retinopathy / genetics*
  • Female
  • Genome-Wide Association Study
  • Genotyping Techniques
  • Glycated Hemoglobin / metabolism
  • Humans
  • Male
  • MicroRNAs / genetics*
  • Middle Aged
  • Odds Ratio
  • Polymorphism, Single Nucleotide / genetics*
  • White People / genetics

Substances

  • Blood Glucose
  • Glycated Hemoglobin A
  • MicroRNAs
  • hemoglobin A1c protein, human