Identification of Resistance Pathways Specific to Malignancy Using Organoid Models of Pancreatic Cancer

Clin Cancer Res. 2019 Nov 15;25(22):6742-6755. doi: 10.1158/1078-0432.CCR-19-1398. Epub 2019 Sep 6.

Abstract

Purpose: KRAS is mutated in the majority of pancreatic ductal adenocarcinoma. MAPK and PI3K-AKT are primary KRAS effector pathways, but combined MAPK and PI3K inhibition has not been demonstrated to be clinically effective to date. We explore the resistance mechanisms uniquely employed by malignant cells.

Experimental design: We evaluated the expression and activation of receptor tyrosine kinases in response to combined MEK and AKT inhibition in KPC mice and pancreatic ductal organoids. In addition, we sought to determine the therapeutic efficacy of targeting resistance pathways induced by MEK and AKT inhibition in order to identify malignant-specific vulnerabilities.

Results: Combined MEK and AKT inhibition modestly extended the survival of KPC mice and increased Egfr and ErbB2 phosphorylation levels. Tumor organoids, but not their normal counterparts, exhibited elevated phosphorylation of ERBB2 and ERBB3 after MEK and AKT blockade. A pan-ERBB inhibitor synergized with MEK and AKT blockade in human PDA organoids, whereas this was not observed for the EGFR inhibitor erlotinib. Combined MEK and ERBB inhibitor treatment of human organoid orthotopic xenografts was sufficient to cause tumor regression in short-term intervention studies.

Conclusions: Analyses of normal and tumor pancreatic organoids revealed the importance of ERBB activation during MEK and AKT blockade primarily in the malignant cultures. The lack of ERBB hyperactivation in normal organoids suggests a larger therapeutic index. In our models, pan-ERBB inhibition was synergistic with dual inhibition of MEK and AKT, and the combination of a pan-ERBB inhibitor with MEK antagonists showed the highest activity both in vitro and in vivo.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • Disease Models, Animal
  • Dose-Response Relationship, Drug
  • Drug Resistance, Neoplasm*
  • Humans
  • Mice
  • Mice, Transgenic
  • Organoids / drug effects*
  • Organoids / pathology*
  • Pancreatic Neoplasms / drug therapy
  • Pancreatic Neoplasms / etiology
  • Pancreatic Neoplasms / metabolism*
  • Pancreatic Neoplasms / pathology*
  • Phosphorylation
  • Protein Kinase Inhibitors / pharmacology
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction*
  • Tissue Culture Techniques

Substances

  • Antineoplastic Agents
  • Protein Kinase Inhibitors
  • Proto-Oncogene Proteins c-akt