Multimerin-2 is an extracellular matrix glycoprotein and member of the elastin microfibril interface-located (EMILIN) family of proteins. Multimerin-2 is deposited along blood vessels and we previously demonstrated that it regulates the VEGFA/VEGFR2 signaling axis and angiogenesis. However, its role in modulating vascular homeostasis remains largely unexplored. Here we identified Multimerin-2 as a key molecule required to maintain vascular stability. RNAi knockdown of Multimerin-2 in endothelial cells led to cell-cell junctional instability and increased permeability. Mechanistically cell-cell junction dismantlement occurred through the phosphorylation of VEGFR2 at Tyr951, activation of Src and phosphorylation of VE-cadherin. To provide an in vivo validation for these in vitro effects, we generated Multimerin-2-/- (Mmrn2-/-) mice. Although Mmrn2-/- mice developed normally and displayed no gross abnormalities, endothelial cells displayed cell junctional defects associated with increased levels of VEGFR2 phospho-Tyr949 (the murine counterpart of human Tyr951), impaired pericyte recruitment and increased vascular leakage. Of note, tumor associated vessels were defective in Mmrn2-/- mice, with increased number of small and often collapsed vessels, concurrent with a significant depletion of pericytic coverage. Consequently, the Mmrn2-/- vessels were less perfused and leakier, leading to increased tumor hypoxia. Chemotherapy efficacy was markedly impaired in Mmrn2-/- mice and this was associated with poor drug delivery to the tumor xenografts. Collectively, our findings demonstrate that Multimerin-2 is required for proper vessel homeostasis and stabilization, and unveil the possibility to utilize expression levels of this glycoprotein in predicting chemotherapy efficacy.
Keywords: angiogenesis; extracellular matrix; tumor growth; tumor microenvironment; vascular homeostasis.
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.