Accumulating evidence revealed that the leading risk factor of endometrial cancer is exposure to endogenous and exogenous estrogens, while the exact mechanism underlying estrogen contribution to endometrial cancer progression has not been elucidated clearly. Interleukin (IL)-6 has been verified to be critical for tumor progression in several human cancers. In this study, we provided evidence that 17β-estradiol (E2) could significantly promote endometrial cancer cells viability, migration and invasion through activation of IL-6 pathway, which involved in its downstream pathway and target genes (p-Stat3, Bcl-2, Mcl-1, cyclin D1 and MMP2). Meanwhile, utilization of IL-6-neutralizing antibody could partially attenuate the increased cancer growth and invasion abilities in Ishikawa and RL95-2 endometrial cancer cell lines and an orthotopic endometrial cancer model. We established a causative link between estrogen and IL-6 signaling activation in the development of endometrial cancer. The molecular mechanism defined in this study provided the evidence that E2 promotes endometrial carcinoma progression via activating the IL-6 pathway, indicating that interruption of IL-6 might be an essential therapeutic strategy in estrogen-dependent endometrial cancer.
Keywords: IL-6; endometrial carcinoma; estrogen; invasion; proliferation.