Despite combination antiretroviral therapies making HIV a chronic rather than terminal condition for many people, the prevalence of HIV-associated neurocognitive disorders (HAND) is increasing. This is especially problematic for children living with HIV. Children diagnosed HAND rarely display the hallmark pathology of HIV encephalitis in adults, namely infected macrophages and multinucleated giant cells in the brain. This finding has also been documented in rhesus macaques infected perinatally with simian immunodeficiency virus (SIV). However, the extent and mechanisms of lack of susceptibility to encephalitis in perinatally HIV-infected children remain unclear. In the current study, we compared brains of macaques infected with pathogenic strains of SIV at different ages to determine neuropathology, correlates of neuroinflammation, and potential underlying mechanisms. Encephalitis was not found in the macaques infected within 24 h of birth despite similar high plasma viral load and high monocyte turnover. Macaques developed encephalitis only when they were infected after 4 months of age. Lower numbers of CCR5-positive cells in the brain, combined with a less leaky blood-brain barrier, may be responsible for the decreased virus infection in the brain and consequently the absence of encephalitis in newborn macaques infected with SIV.
Keywords: Blood-brain barrier; HIV encephalitis; Pediatric HIV infection.