Though a growing body of preclinical and translational research is illuminating a biological basis for resilience to stress, little is known about the genetic basis of psychological resilience in humans. We conducted genome-wide association studies (GWASs) of self-assessed (by questionnaire) and outcome-based (incident mental disorders from predeployment to postdeployment) resilience among European (EUR) ancestry soldiers in the Army study to assess risk and resilience in servicemembers. Self-assessed resilience (N = 11,492) was found to have significant common-variant heritability (h2 = 0.162, se = 0.050, p = 5.37 × 10-4 ), and to be significantly negatively genetically correlated with neuroticism (rg = -0.388, p = .0092). GWAS results from the EUR soldiers revealed a genome-wide significant locus on an intergenic region on Chr 4 upstream from doublecortin-like kinase 2 (DCLK2) (four single nucleotide polymorphisms (SNPs) in LD; top SNP: rs4260523 [p = 5.65 × 10-9 ] is an eQTL in frontal cortex), a member of the doublecortin family of kinases that promote survival and regeneration of injured neurons. A second gene, kelch-like family member 36 (KLHL36) was detected at gene-wise genome-wide significance [p = 1.89 × 10-6 ]. A polygenic risk score derived from the self-assessed resilience GWAS was not significantly associated with outcome-based resilience. In very preliminary results, genome-wide significant association with outcome-based resilience was found for one locus (top SNP: rs12580015 [p = 2.37 × 10-8 ]) on Chr 12 downstream from solute carrier family 15 member 5 (SLC15A5) in subjects (N = 581) exposed to the highest level of deployment stress. The further study of genetic determinants of resilience has the potential to illuminate the molecular bases of stress-related psychopathology and point to new avenues for therapeutic intervention.
Keywords: genetics; genome-wide association; mental disorder; resilience; risk.
© 2019 Wiley Periodicals, Inc.