HDAC1,2 Knock-Out and HDACi Induced Cell Apoptosis in Imatinib-Resistant K562 Cells

Int J Mol Sci. 2019 May 8;20(9):2271. doi: 10.3390/ijms20092271.

Abstract

Since imatinib (Glivec or Gleevec) has been used to target the BCR-ABL fusion protein, chronic myeloid leukemia (CML) has become a manageable chronic disease with long-term survival. However, 15%-20% of CML patients ultimately develop resistance to imatinib and then progress to an accelerated phase and eventually to a blast crisis, limiting treatment options and resulting in a poor survival rate. Thus, we investigated whether histone deacetylase inhibitors (HDACis) could be used as a potential anticancer therapy for imatinib-resistant CML (IR-CML) patients. By applying a noninvasive apoptosis detection sensor (NIADS), we found that panobinostat significantly enhanced cell apoptosis in K562 cells. A further investigation showed that panobinostat induced apoptosis in both K562 and imatinib-resistant K562 (IR-K562) cells mainly via H3 and H4 histone acetylation, whereas panobinostat targeted cancer stem cells (CSCs) in IR-K562 cells. Using CRISPR/Cas9 genomic editing, we found that HDAC1 and HDAC2 knockout cells significantly induced cell apoptosis, indicating that the regulation of HDAC1 and HDAC2 is extremely important in maintaining K562 cell survival. All information in this study indicates that regulating HDAC activity provides therapeutic benefits against CML and IR-CML in the clinic.

Keywords: CML; CRISPR/Cas9; histone deacetylase inhibitor; imatinib; imatinib-resistant.

MeSH terms

  • Acetylation / drug effects
  • Apoptosis / drug effects
  • CRISPR-Cas Systems / genetics
  • Drug Resistance, Neoplasm / drug effects
  • Fusion Proteins, bcr-abl / antagonists & inhibitors
  • Fusion Proteins, bcr-abl / genetics*
  • Gene Knockout Techniques
  • Histone Deacetylase 1 / genetics*
  • Histone Deacetylase 2 / genetics*
  • Histone Deacetylase Inhibitors / pharmacology
  • Humans
  • Imatinib Mesylate / adverse effects
  • Imatinib Mesylate / pharmacology
  • K562 Cells
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / drug therapy*
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / genetics
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / pathology
  • Neoplastic Stem Cells / drug effects
  • Panobinostat / pharmacology

Substances

  • Histone Deacetylase Inhibitors
  • Imatinib Mesylate
  • Panobinostat
  • Fusion Proteins, bcr-abl
  • HDAC1 protein, human
  • HDAC2 protein, human
  • Histone Deacetylase 1
  • Histone Deacetylase 2