In meeting the increasing need for clean water in both developing and developed countries and in rural and urban communities, photothermal membrane water treatment technologies provide outstanding advantages: For developing countries and rural communities, by utilizing sunlight, photothermal membrane water treatment provides inexpensive, convenient, modular, decentralized, and accessible ways to clean water, which can reduce the consumption of conventional energy (e.g., electricity, natural gas) and the cost of clean water production. In developed countries and urban communities, photothermal membrane water treatment can improve the energy efficiency during water purification. In these water purification processes, the light absorption and light-to-heat conversion of photothermal materials are important factors in determining the membrane efficacy. Nanomaterials with well-controlled structure and optical properties can increase the light absorption and photothermal conversion of newly developed membranes. This Account introduces our recent work on developing scalable, cost-effective, and highly efficient photothermal membranes for four water purification applications: reverse osmosis (RO), ultrafiltration (UF), solar steam generation (SSG), and photothermal membrane distillation (PMD). By utilizing photothermal materials, first, we have demonstrated how sunlight can be used to improve the membrane's resistance to biofouling in RO and UF processes by photothermally induced inactivation of microorganisms. Second, we have developed novel SSG membranes (i.e., interfacial evaporators) that can harvest solar energy, convert it to localized heat, and generate clean water by evaporation. This desalination approach is particularly useful and promising for treatment of highly saline water. These new interfacial evaporators utilized graphene oxide (GO), reduced graphene oxide (RGO), molybdenum disulfide (MoS2), and polydopamine (PDA). The solar conversion efficiency and environmental sustainability of the interfacial evaporators were optimized via (i) novel and versatile bottom-up biofabrication (e.g., incorporation of photothermal materials during bacterial nanocellulose (BNC) growth) and (ii) easy and cost-effective top-down preparation (e.g., modification of natural wood with photothermal materials). Third, we have developed membranes for PMD that incorporate photothermal materials to generate heat under solar irradiation, thus providing a higher transmembrane temperature difference and higher driving force for effective vapor transport, making the membrane distillation process more energy-efficient. Lastly, this Account compares the photothermal membrane applications, summarizes current challenges for photothermal membrane applications, and offers future directions to facilitate the translation of photothermal membranes from the laboratory to large engineered systems by improving their scalability, stability, and sustainability.