Extraction Optimization and Effects of Extraction Methods on the Chemical Structures and Antioxidant Activities of Polysaccharides from Snow Chrysanthemum (Coreopsis Tinctoria)

Polymers (Basel). 2019 Jan 26;11(2):215. doi: 10.3390/polym11020215.

Abstract

In order to explore snow chrysanthemum polysaccharides (SCPs) as functional food ingredients and natural antioxidants for industrial applications, both microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) were firstly optimized for the extraction of SCPs. Furthermore, the effects of conventional hot water extraction, UAE, and MAE on the chemical structures and antioxidant activities of SCPs were investigated. The maximum extraction yields of SCPs extracted by UAE (4.13 ± 0.24%) and MAE (4.26 ± 0.21%) were achieved at the optimized extraction parameters as follows: ultrasound amplitude (68%) and microwave power (500 W), ultrasound extraction time (21 min) and microwave extraction time (6.5 min), and ratio of liquid to raw material (42.0 mL/g for UAE and 59.0 mL/g for MAE). In addition, different extraction methods significantly affected the contents of uronic acids, the molecular weights, the molar ratio of constituent monosaccharides, and the degree of esterification of SCPs. SCPs exhibited remarkable DPPH (IC50 ≤ 1.702 mg/mL), ABTS (IC50 ≤ 1.121 mg/mL), and nitric oxide (IC50 ≤ 0.277 mg/mL) radical scavenging activities, as well as reducing power (≥ 80.17 ± 4.8 μg Trolox/mg), which suggested that SCPs might be one of the major contributors toward the antioxidant activities of snow chrysanthemum tea. The high antioxidant activities (DPPH, IC50 = 0.693 mg/mL; ABTS, IC50 = 0.299 mg/mL; nitric oxide, IC50 = 0.105 mg/mL; and reducing power, 127.79 ± 2.57 μg Trolox/mg) observed in SCP-M extracted by the MAE method might be partially attributed to its low molecular weight and high content of unmethylated galacturonic acids. Results suggested that the MAE method could be an efficient technique for the extraction of SCPs with high antioxidant activity, and SCPs could be further explored as natural antioxidants for industrial application.

Keywords: Coreopsis tinctoria; antioxidant activity; chemical structure; extraction optimization; polysaccharide.