Desorption electrospray ionization (DESI) mass spectrometry imaging (MSI) can simultaneously record the 2D distribution of polar biomolecules in tissue slices at ambient conditions. However, sensitivity of DESI-MSI for nonpolar compounds is restricted by low ionization efficiency and strong ion suppression. In this study, a compact postphotoionization assembly combined with DESI (DESI/PI) was developed for imaging polar and nonpolar molecules in tissue sections by switching off/on a portable krypton lamp. Compared with DESI, higher signal intensities of nonpolar compounds could be detected with DESI/PI. To further increase the ionization efficiency and transport of charged ions of DESI/PI, the desorption solvent composition and gas flow in the ionization tube were optimized. In mouse brain tissue, more than 2 orders of magnitude higher signal intensities for certain neutral biomolecules like creatine, cholesterol, and GalCer lipids were obtained by DESI/PI in the positive ion mode, compared with that of DESI. In the negative ion mode, ion yields of DESI/PI for glutamine and some lipids (HexCer, PE, and PE-O) were also increased by several-fold. Moreover, nonpolar constituents in plant tissue, such as catechins in leaf shoots of tea, could also be visualized by DESI/PI. Our results indicate that DESI/PI can expand the application field of DESI to nonpolar molecules, which is important for comprehensive imaging of biomolecules in biological tissues with moderate spatial resolution at ambient conditions.